JOURNAL OF MAGNETIC RESONANCEL34,223-235 (1998)
ARTICLE NO. MN981510

Evolution Strategy Optimization for Selective Pulses in NMR

E. Lunati,* P. Cofrancesco,* M. Villa;* P. Marzola,t and F. Osculatit

*Unita INFM c/o Dipartmento di Fisica dell’Universita27100 Pavia, Italy, andlstituto di Anatomia e Istologia dell'Universit87100 Verona, ltaly

Received December 30, 1997; revised April 30, 1998

We present a first set of improved selective pulses, obtained with
a numerical technique similar to the one proposed by Geen and
Freeman. The novelty is essentially a robust and efficient “evolu-
tion strategy” which consistently leads, in a matter of minutes, to
“solutions” better than those published so far. The other two
ingredients are a “cost function,” which includes contributions
from peak and average radiofrequency power, and some under-
standing of the peculiar requirements of each type of pulse. For
example, good solutions for self-refocusing pulses and “negative
phase excitation pulses” (which yield a maximum signal well after
the end of the pulse) are found, as may have been predicted,
among amplitude modulated pulses with 270° tip angles. Empha-

Even if relaxation is neglected, and gradients are static,
treatment of the spin-excitation problem outside the line:
regime is not simple, since it belongs to the class of tf
so-called ill-posed, or inverse, problems for which an exact, |
unique, “solution” does not exist. Several approximate analy
ical techniques have been developed: for instance, the St
nar—Le Roux transforml( 2) and the inverse scattering theory
(3) find a solution for magnetization profiles which are approx
imated by polynomial or rational functions. Another approac
involves numerical optimization of the pulse function de
scribed in a parameter space which, ideally, covers all allow

sis is given to the search for solutions with low RF power for
selective excitation, saturation, and inversion pulses. Experimen-
tal verification of accuracy and power requirements of the pulses
has been performed with a 4.7 T Sisco imager. © 1998 Academic Press

Key Words: selective-pulse design; optimization; evolution strat-
egy; linear-phase pulses; power reduction.

pulses. A search is made, in that space, for a “solution” whic
minimize a suitable error function, measuring the “distance
between target and properties of the actual pulseX numer-
ical approach of this kind is due to Geen and Freen@nlg
their method, the pulse “amplitude” (with sign) is written as
truncated Fourier series; the trajectory of each component
the magnetization during the pulse is followed by integration ¢
the Bloch equations, the resulting magnetization profile
computed, and an “error” value is assigned to it, which i
Selective pulses are widely utilized in NMR imaging andelated with the rms difference relative to the ideal profile. Th
high-resolution spectroscopy for perturbing the magnetizatigearch for the optimal pulse is initially performed by repeatin
over a well-defined frequency range without affecting thghe previous steps many times with randomly chosen Four
magnetization elsewhere. They serve a range of purposes aoéfficients; the best solution found by the stochastic optirr
should, correspondingly, satisfy different requirements. Howation is then refined through deterministic optimization.
ever, a major consideration in pulse design has always been thgye have found that a modified Geen and Freeman appros
type of the hardware, which may or may not permit both phag@an be successfully applied, with proper care, to many types
and amplitude modulation of the RF excitation. For examplgelective excitation. The adiabatic and composite pulses are
composite pulses exploit the coarse phase-shifting capabilityfrt, an exception, and will be discussed in a separate pa
the early spectrometers, and achieve efficient broadband gth our algorithm, it takes, typically, a Pentium PC a few
COUp”ng or minimal SenSitiVity to RF inhomogeneities Withouﬁ]inutes to converge, from any Starting point, to a solution ¢
resorting to amplitude modulation. A better solution of thehe problem which is, at least, as good as any other solution
uniform irradiation problem with inhomogeneous RF fields ig published. The key technical advance is a robust stochas
offered by the adiabatic pulses, which requires complex (thﬁ&imizer, with a “strategy” that automatically goes from
and amplitude) modulation, a standard feature in modern spegsarse search” to “refinement.” As an example, Fig. 1 con
trometers. In the future, localized spectroscopy will deal withyres the magnetization profiles of the self-refocusing pul
the problem of an RF excitation in the presence of rapide_gURP2) of Geen and Freeman with our solution, obtaine
varying, rather than static, magnetic gradients. with 50,000 “attempts” (a little owel h with a Pentium). We
1 To whom correspondence should be addressed at Dipartimento di Fisliqt:%Ve used the S_ame Fourier expansion (10 harmoqlc§) and
“A. Volta,” via Bassi, 6, 1-27000 Pavia (Italy). Fax:-39 382 507221. E-mail: S@me error function as Geen and Freeman. Our deviations fr
mvilla@matsci.unipv.it. ideality are substantially less than those of Geen and Freem

1. INTRODUCTION
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FIG. 1. Comparison between self-refocusing pulses E-BURP2 (Geen and Freeman) and L0S2-0 (new).
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the rms error is 2.2% (against 4.3%), while peak power amdnstitute our method, and to present some of the optimiz
average power of the two pulses are the same.

complex pulses which may be downloaded from our Web 8jte (
The goal of the article is to outline the procedures whicth will be apparent that, by substituting the error function with
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FIG. 2. Comparison of pulses with = +0.5 ¢ = 0.25: thesinc and Gaussian pulses and the new L5S2. (a) Pulse shape; (b) transverse respon
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TABLE 1
Comparison between New and Traditional Pulses

Pulse Properties Ne o k Pox P VEP(%)
L5S2 Excit. 90 9 0.25 +0.5 4.08 0.74 3.3
Sinc2 Excit. 90 2 0.25 +0.5 3.99 0.74 5.7
Gauss2 Excit. 90 2 0.25 +0.5 3.88 0.60 11.9
L5S5 Excit. 90 9 0.5 +0.5 3.52 1.26 9.2
Sinc5 Excit. 90 2 0.5 +0.5 3.78 1.32 10.2
Gauss5 Excit. 90 2 0.5 +0.5 3.79 1.38 11.7
L3S5 Excit. 90 15 0.5 +0.333 4.02 1.43 7.3
L0S2-0 Excit. 90 21 0.25 0 445 7.80 4.6
EBURPZ Excit. 90 21 0.25 0 455 7.77 49
L0S2-1 Excit. 90 15 0.25 0 15.3 5.28 5.2
EBURPP Excit. 90 17 0.25 0 28.6 5.87 49
LOS3 Excit. 90 11 0.333 0 27.1 5.33 9.9
LOS5 Excit. 90 9 0.5 0 33.8 9.49 12.3
L-5S2 Excit. 90 13 0.25 -0.5 21.7 4.02 11.2
L-3S4 Excit. 90 19 0.4 —0.333 27.0 7.85 9.3
SAS2 Satur. 90 9 0.25 3.68 0.73 3.0
INS2 Inver. 180 15 0.25 16.1 5.43 9.0
I-BURPT? Inver. 180 19 0.25 27.4 6.62 11.0
I-BURP2 Inver. 180 23 0.25 61.4 6.80 11.5
RES?2 Refoc. 180 12 0.25 57.3 6.37 17.0
RE-BURF Refoc. 180 16 0.25 92.7 7.76 17.2

2From Geen and Freemah)(
b All errors are computed with a transition bagd= é

more general “cost” function, it is very easy to accommodatbe following, the pulse length is divided into 64 time step
different kinds of constraints, and compromise between reducaad the time functions are, typically, expanded in a Fouri
RF power and accuracy of the profile. Sometimes, we drasticatlgries with up to 20 harmonics.

changed the number of parameters (or harmonics) and foun@. We define the ideaarget functionwith the desiredv,,
empirically what we should have known from the outset: In somM,, M, profiles, and a rule to compute tieeror function,a
cases, phase modulation is really not needed; adding parameatezasure of the “distance” between the calculated magne
beyond a certain limit reduces the quality of the solution which mation profiles and the target function. We also introduce

found with a given number of iterations. cost functionwhich is linearly related with the error func-
tion and may include the peak and/or the average pul
2. METHODS power. By handling this cost function rather than the errc

function, we may automatically avoid solutions with exces

As hinted in the Introduction, a numerical approach to thsive deposited power, or which are not compatible with th

selective excitation problem comprises the following eleRF amplifiers. We may also compromise between lo
ments: power and small error.

1. Pulse shape parametrizatiohVhile phase and ampli- 3 We ”c_hoose_am)p_tlmlzanon Strategywhmh“ Ieadf toa
solution,” i.e. to identify a pulse with minimal “cost.

tude modulations are applied and computed in a stepwise
fashion, it is usua_lly conv_enlent to deal with analytic form arametrization and Computation
of these modulations which have some smoothness. If the
time step is substantially shorter than the reciprocal band-We are not suggesting a “black box” solution of the
width of the NMR signal, the discrete nature of the excitaselective pulses problem: On the contrary, we found it vel
tion should become irrelevant. The argument may not be Boportant to translate our understanding of the problem in
clear-cut when we consider a variable magnetic gradient, thie choices which lead to the parametrization of the puls
field, as a part of the excitation (Tannus and Garwony, ( particularly for adiabatic and composite pulses. We refus
but it should essentially hold with static fields. An implicathe brute force approach of a “point-by-point” pulse defini
tion is that a “soft” upper limit exists for the number oftion for the same reasons as Geen and Freeman, which
harmonics which may reasonably be taken into account. tmeoretical (functions should be “smooth”) and practice
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FIG. 3. Shape profile (a) and transverse response (b) of pulse L6S5Q.5, o = 0.5).

(optimization may be very difficult and long in a high- No
dimension parameter space). A Fourier series approach sati(7) = 27{>, [Acod2mn7) + Bsin(27nT)]} [2a]
isfies these requirements; we have used it both for amplitude n=0
modulation (as Geen and Freeman did), and for complex Np
modulation (phase and amplitude) which will be presented Wyy(7) = 27>, [C.cod2mn7) + D sin2mnD) ]}, [2b]
here because more general. We have also attempted other n=0

types of expansion proposed in the literatu 9, but

found no advantage in them. h A D th Gimizati ¢
We will use time and frequencies normalized with the puls\’éh ere A, ...D, are the optimization parameters ang,

should be substantially smaller than the numbeof steps.

durationT, Neglecting relaxation, we can obtain the final magnetizatic
profile (r = 1), by orderly multiplying the Bloch rotation
matricesR,, of each ste
=T W= 0T, [1] C8SFn step
N
Amplitude and phase modulation are defined through the real M(1) =[] RM(0). [3]

and imaginary components,, andw,,, written as n=1
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FIG. 4. Shape profile (a) and transverse response (b) of pulse LI8S5@.333,0 = 0.5).

HereM(0) is the starting magnetization vector, and Rs = cosp,sinb, sinp,,. [51]

R« R+TR R;— R, )
R=| Ri— R R, Rs+ Rs |, [4] In these equationgy,, ¢,, 6, refer to thenth step and are,
R:+ R, Rs— R; R, respectively, the precession angle aroug; (the effective
field), the phase dB; in thexy plane, and the tilt 0B from
with the z axis.
The vectorB; depends on the offset (normalizefv: For
Ry = COS¢y(coS8,c0sp, + Sirfe,) + sifdcosp, [5a] any pulse shape, the Bloch equations algorithm provides t

R, = Sirf,(C0S6,C0Sp, + Sirt6,) + cog,Cosp [5b] final magnetization vs the offset, i.e., thesponse function
" e e M (Aw), which should be compared with tharget function

R,, = Sirf6,cosp, + cogo, [5¢] MT(Aw). Following Geen and Freeman we introduce iee
R, = sin ¢,0s ¢,sin6,(1 — cosp,) [5d] lectivity o as
R, = cosh,sinp,, [5e]

1
R; = cosp,sinf,cod, (1 — cop,,) [51] 7= BW- T, [6]
R, = sing,sinf,sinp,, [50]

Rs = sin¢,sinf,cod, (1 — cop,,) [5h] whereBWis the desired bandwidth in hertz. It follows that the
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FIG.5. Comparison of self-refocusing pulsés= 0) with o = 0.25: E-BURP1 (Geen and Freeman) and L0S2-1 (new). (a) Pulse shape; (b) transverse respo

normalized bandwidth yy = 2#BW - T, and selectivity are . W, 1
simply related: trans”: - < [w| = w, (2 + B) [8b]
. ’ 1
o out’: Win { 5 + B < W] = Wi [8c]
Win = 7 [7]

. The error functionE{ x;} will be defined as combination of
The Cost Function mean square deviations within the in-band and out-of-bal
{i%%ions, for all three components of the magnetizationx|f (

It seems natural to accept that the response to a selec S
IS a point in the parameter space, we set

pulse will always exhibit a transition band, which cannot b
extremely narrow. It also makes sense not to impose any
prescription for the behavior of the magnetization in this band;
in a similar way, an engineer specifies a filter by giving cutoff

frequencies, maximum in-band oscillation, minimum off-ban@herea = X, y, z and
attenuation, and extension of the transition regions. We will

E{x} = 2 X, [9]

consider the following band regions: fu kE [Ma(Awi, {x}) = Mi(Aw)]*
€in
+ 2 [Mu(Aw, {x}) — Mi(Aw)T?
Wi, keout

g ”. 2 . =
in": [w =5 [Ba] XX} N, + 2N, [10]
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FIG. 6. Shape profile (a) and transverse response (b) of pulse L48S4 {0.333,0 = 0.4).

and N;,N,,; are the number of frequency points in-band and@/e define the cost function as
out-of-band, respectively. Notice that we may give different
relative weights{ to components of the magnetization and to E{x}=> X2+ A1Poc + AP [13]
band regions. In the following, we will always s&t = {,. a

To take RF power into consideration, we begin noticing that
it scales ag 5 ?, i.e., the ratio between pow/ and bandwidth where the,;, A, coefficients are carefully set, during the
squared BW)? does not depend upon pulse duration. Thereptimization of each pulse, according to the relative magn

fore, we introduce th@ormalized powegs tudes of the response profile errpy, andp,,, and in view of
the performances required to each solution. Alternatively, w
W(7) may have controlled the RF power by setting an upper limit 1
p(7) = owa(n)|* = Gz - [11]  p,, or p,, (10) and neglecting all solution beyond these limits

However, we found it more instructive always to search for
power efficient pulse, with the exception of the case present

and peak py,) and mean ) power as in Fig. 1, where our purpose was to compare optimizatic

5 , strategies.
Ppx= o MAX{n}HWl(Tn)' ] [12&]
. Optimization Strategy
2
P = % > w2 [12b] The cost functionE{ x} must be minimized in a space
n=1 {x}, which has up to 50 parameters constrained by cond
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FIG. 7. Shape profile (a) ani¥l, response (b) of the saturation pulse SA52< 0.25).

tions of the typeu, < x < v;. The deterministicoptimizers involve a finite-difference estimation of the derivatives of th
build a sequence of solutiond™ with the recursive equa- error function E(x™). All these methods may be groupec
tion together in the large class of the so-called higher order det
ministic optimization methods (HODOM).
XM = x ™ 4 gmgm, [14] However, when the dimension of the parameter space i
creases, the cost function is likely to have many local minim.
beginning with an initial guesg®. Herem is the iteration and each of them may trap the trajectory of pokit8. In this
index, a™ is called thestep,and s™ the slope. Different case,stochasticmethods are usually more effective. Even i
choices of the slope vectsrcharacterize the various methodsthey have common mathematical foundatiohB (the stochas-
for example, if we move our point in the direction of the fastesic algorithms take different names (simulated annealin

decrease OE, i.e., (12, 13, genetic 14, 19, evolution strategiesl§), . . . ), but
may be collectively called zeroth-order stochastic optimizatic

s™ = —gradE(x™), [15] methods (ZOSOM). We begin thth iteration with a set ofw

“parent” vectors:x{™, ..., x{(™; from these,\ “children”
we have the well-knowisteepest descemtethod. All popular vectorsy{™, ..., y{™ are generated according to the proba

choices of the slope (i.e., quasi-Newton, conjugate gradientbility law
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FIG. 8. Comparison of inversion pulses with= 0.25: -BURP1 (Geen and Freeman) and INS2 (new). (a) Pulse shapé;, (fesponse.

i — (X)) 2 dispersion of the next step should be taken on the basis o
p(y, ()., d) = EXP[ -2 (d) } , [16] statistically significant number of generations. The tuning el
i ' ments of the evolution strategy are the length of the “history
upon which the statistic is made, the dispersion fraction
wherep is the probability densityx;) is the average of thigh change, and the critical success rate of children that triggers
parameter over the parents, add= {d;} is a dispersion increase of the search range. When we increase the numbe
vector, adjusted at each iteration. We haveia{ A) strategy parameters, we need to increase the evolution history, but tc
if in the next iteration the new parents are thesectors with computation time, in principle, is almost unaffected.
the smallest errors in the set comprising both parents andlhe stochastic methods have several distinct advantag
children. We have ay, A) strategy ifA > u and the besp relative to the deterministic methods. First, they are mol
vectors are selected among the children only. The main feateféective in reaching a global minimum, or at least a ver
of anevolution strategy17) is the rule by which the dispersionstable local minimum. Second, they are more robust, sin
is modified. When the parents are close to the minimum anodcillating trajectories are avoided. Third, no assumptior
the range of search is much larger than the distance fromhgve to be made about the smoothness of the cost functit
very few of the children will be better than the parents, and tlas required during the computation of the derivatives. An
value of||d|| should be reduced; when children are frequenthast, the treatment of constraint conditions is usually muc
better than parents, the dispersion should be increasedsitmpler than in HODOMs. Among the stochastic algorithm
explore regions farther away frokx). A decision about the an evolution optimizer is preferable to the simulated annec
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FIG. 9. Comparison of refocusing pulses with= 0.25: RE-BURP (Geen and Freeman) and RES2 (new). (a) Pulse shap; (g3ponse.

ing of Geen and Freeman because it can approach fifease pulsesl@)): ¢ = kAw. The constant of proportionality
minimum with no need for deterministic refinement. W& may be positive, as for ordinary pulses, negative, as for tl
will use an evolution strategy carefully tailored to the sé‘prefocused pulses” of Ngo and Morri&9), or zero, as for the

lective excitation problem, which regularly yields a “good’so-called self-refocusing pulses, 0, 23. In unit of M, the

solution in a few hundred iterations. equilibrium magnetization value, the target function is (se
Egs. [8])
3. RESULTS
MI(Aw) = sin(kAw) [17a]
Linear-Phase Selective 90° Pulses
) i ) ) ) Mi(Aw) = cogkAw) [17b]
The problem is to find a selective, 90° pulse in which the T
response phase is proportional to the frequency offset (linear- M;(Aw) = 0 [17c]

refocusing pulse

pulse to be tested : acquisition
L "M N

FIG. 10. Sequence for acquisition of 90° pulse response.
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FIG. 11. Response of (a) sincH38 dB) and (b) L5S2 {37 dB) pulses.

when|Aw| = w;, /2, while

M (Aw) =0
My(Aw) = 0
MI(Aw) = 1

pulse to be tested

-4

kHz

[18a]
[18b]
[18c]

L-3S4 90° pulse

when w,,/2 < |Aw| = W, . When the coefficienk is
positive, refocusing is usually accomplished with an inverte
gradient in MRI and/or with a hard 180° pulse. Whkris
negative, the maximum signal is achieved sometimes after 1
pulse end, with no change iB,. Whenk = 0, all signal
components are in phase when the pulse ends.

Positive phase is a “natural” feature of excitation pulses. |
fact, the linear response theory provides, as the best select
pulse shape, the sinc function, which gives a coefficient
0.5; inimaging we then need to invert the gradient for a timi
0.5 T, to obtain an echo. A Gaussian pulse also kas 0.5.
When we search for amplitude and phase modulated solutic
with k = 0.5, thealgorithm spontaneously converges towar:
real (purely AM) pulses, similar to slightly shifted sinc shape:s
correspondingly, the response is symmetric around the cen
frequency. Figure 2 compares a sinc and a Gauss pulse (se
tivity o = 0.25) with our solution L5S2 (linear-phase pulse
with k = 0.5 and selectivity= 0.25; see Table 1). These three
pulses require essentially the same peak power, but the n
one displays a better in-band profile than the Gauss and a be
out-of-band profile than the sinc. With increasing selectivit
(i.e., reduced time needed to excite the same bandwidth),
advantages of our solution L5S% (= 0.5), relative to the
corresponding Gauss and sinc pulses, becomes more evid
as reported in the table; this pulse is shown in Fig. 3. A
interesting solution, which has no classical counterpart,
L3S5 (k = 0.333,0 = 0.5), which is shown in Fig. 4. With
an inverted gradient, it requires only a 0.383 refocusing
time, and uses the same power as a Gauss pulse.

Pulses wittk = 0 are calledself-refocusingpulses; the most
commonly used are BURPSY and SNEEZE pulses20, 21).
Geen and Freeman’s E-BURP2 is a self-refocusing pulse w
o = 0.25, obtained via simulated annealing followed by de
terministic refinement. It has been compared with our solutic
L0S2-0 (pulse wittkk = 0 ando = 0.25, version 0), obtained
with the same error function and selectivity of these authors,
Fig. 1. Notice from Table 1 that these two solutions require R
peak powemp,, of about 45, i.e., 10 times that of a Gaussia
pulse. In the computation of Table 1 we adopted a narrow
transmon band than Geen and Freeman mcH rather than
B = ) and we routinely included peak and average power
our cost function. Results for the self-refocusing pulses a
presented in Fig. 5, which compares the theoretical profiles

acquisition

o
P

=

FIG. 12. Sequence for acquisition of 180° pulse response.
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Saturation, Inversion and Refocusing Pulses

In addition to linear-phase pulses, MRl and NMR may nee
saturation pulses,inversion (or 180°) pulses, andefocusing
pulses, all of which may be either hard or frequency-selectiv
The difference between linear-phase and saturation pulses
that, with the former, we are not interested in the phase of tl
in-plane magnetization: correspondingly, we may piit =
y‘y” = 0 in Eqg. [10]. They usually show better profile anc
power performances than the linear-phase pulses, because
are less constrained. Figure 7 shows te magnetization
profile of the saturation pulse SASZ (= 0.25) which has
smaller peak and mean power than the “natural” L5S2 linea
phase pulse.

(a) Obviously, in-plane magnetization is ignored also in invel
sion pulses, which ideally hawd, = —1 in-band, andJ, =
1 elsewhere. Figure 8 compares I-BURP1 of Geen and Fre
man (pyx = 27.4)with our corresponding solution INS2,
= 16.1),both witho = 0.25. Notice that our profile is sharper
(this follows from using narrower transition bands than Free
man) and peak power smaller. For comparison, in the table
quote also the characteristics of I-BURP2, which needs ma
power than I-BURP1. As discussed by Geen and Freeman
refocusing pulse should be time-symmetrical, and a real mc
ulation with only cosine termsB, = 0, D, = 0 in Egs. [2])
will do. Our solution, found in this way (RES2) is comparec
with RE-BURP of Freeman in Fig. 9 and in the table. Our puls
is sharper, has worse off-band behavior, and requires nec
half peak power.

4. CONCLUSIONS
(b)
We have proposed a robust method to explore the spaces
FIG. 13. Response of (a) I-BURP1+47 dB) and (b) INS2 {44 dB) solutions of band-selective pulses which seems to us supel
pulses. to analytical or numerical approaches so far published.
particular, we consistently find low-power solutions by weight

Geen and Freeman’s E-BURP1 pulgg,(= 28.6) with our ing the power in the cost function. We have discussed puls

low-power solution L0S2-1p, = 15.3). Our response is With negativek which may find a variety of applications, e.g.,

slightly worse, but we need half the peak power of E-BURPR fast projection-reconstruction sequences.

and one-third that of E-BURP2. In the table, we mention two

self-refocusing 270° pulses: LOS@ € 0.333) and LOS5« = 5. EXPERIMENTAL

0.5). Despite the higher tip angle, they require the same peak

power as E-BURP1 while having higher selectivity and better We tested our pulses with a Sisco-Varian 4.7 T imager al

phase behavior, as noted earlier by Emsley and Bodenhauaaylindrical water phantom with axis alomg. We found that

(22) when comparing Gaussian pulses of 90° and 270°. By thetifacts may be minimized, and sequence time reduced,

way, the optimization found these solutions by itself when nentirely avoiding gradient switching. The excitation bandwidtl

constraint was set on the pulse angle. of the pulse to be tested was set to 2 kHz. Figure 10 shows |
We found it quite difficult to generate good-looking and loveequence employed to test linear-phase pulses. We used

power pulses with negative Response profiles are worse, andefocusing pulse RES2 (independently tested) with a wid

power much higher, than for positive pulses. In Table 1 we liseandwidth (4 kHz) in order not to interfere with the profile of

several solutions: witlkk = —0.5, 0 = 0.25 (-5S2, a 270° the first pulse. This setup allows one to measurekttialue of

pulse) ork = —0.333,0 = 0.4 (L-3S4). Figure 6 shows thethe linear-phase pulses in terms of the time-shift of the ecl

pulse shape of L-3S4 and its response. obtained. We found delays consistent with our predictions, b
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in Fig. 11 we show the absolute magnitude of the FT of thé. http://matsci.unipv.it/persons/lunati/pulses.htm

entire echo, which does not depend upon the echo time. THeA. Tannus and M. Garwood, SMR Book of Abstracts, 1543 (1997).
amplitude of the first pulse is tuned for maximum signal, an@. Z. Starcuk, Jr., K. Bartusek, and Z. Starcuk, J. Magn. Reson. A 106,
the reading of the attenuator yields a rough indication of the 106 (1994).

pulse power. Figure 11 compares the response of a sinc puf$e’- Slotboom, J. W. Gunning, A. F. Mehlkope, and W. M. J. J. Bovée,
(o = 0.25) with the response of our L5S2; as expected, the lagt > Madn- Reson. A 101, 257 (1993).

is better and requires about the same pOW(SKdB for L5S2 10. S. Topp and K. Schaumburg, SMR B(?Ok of Abstract-s,‘ 1457 (1996).
and +38 dB for the sinc). 11. A. Gottvald, K. Preis, C. Magele, O. Biro, and A. Savini, IEEE Trans.

. . . Magn. 28, 3 (1992).
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