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We present a first set of improved selective pulses, obtained with
a numerical technique similar to the one proposed by Geen and
Freeman. The novelty is essentially a robust and efficient “evolu-
tion strategy” which consistently leads, in a matter of minutes, to
“solutions” better than those published so far. The other two
ingredients are a “cost function,” which includes contributions
from peak and average radiofrequency power, and some under-
standing of the peculiar requirements of each type of pulse. For
example, good solutions for self-refocusing pulses and “negative
phase excitation pulses” (which yield a maximum signal well after
the end of the pulse) are found, as may have been predicted,
among amplitude modulated pulses with 270° tip angles. Empha-
sis is given to the search for solutions with low RF power for
selective excitation, saturation, and inversion pulses. Experimen-
tal verification of accuracy and power requirements of the pulses
has been performed with a 4.7 T Sisco imager. © 1998 Academic Press
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egy; linear-phase pulses; power reduction.

1. INTRODUCTION

Selective pulses are widely utilized in NMR imaging and
high-resolution spectroscopy for perturbing the magnetization
over a well-defined frequency range without affecting the
magnetization elsewhere. They serve a range of purposes and
should, correspondingly, satisfy different requirements. How-
ever, a major consideration in pulse design has always been the
type of the hardware, which may or may not permit both phase
and amplitude modulation of the RF excitation. For example,
composite pulses exploit the coarse phase-shifting capability of
the early spectrometers, and achieve efficient broadband de-
coupling or minimal sensitivity to RF inhomogeneities without
resorting to amplitude modulation. A better solution of the
uniform irradiation problem with inhomogeneous RF fields is
offered by the adiabatic pulses, which requires complex (phase
and amplitude) modulation, a standard feature in modern spec-
trometers. In the future, localized spectroscopy will deal with
the problem of an RF excitation in the presence of rapidly
varying, rather than static, magnetic gradients.

Even if relaxation is neglected, and gradients are static, a
treatment of the spin-excitation problem outside the linear
regime is not simple, since it belongs to the class of the
so-called ill-posed, or inverse, problems for which an exact, or
unique, “solution” does not exist. Several approximate analyt-
ical techniques have been developed: for instance, the Shin-
nar–Le Roux transform (1, 2) and the inverse scattering theory
(3) find a solution for magnetization profiles which are approx-
imated by polynomial or rational functions. Another approach
involves numerical optimization of the pulse function de-
scribed in a parameter space which, ideally, covers all allowed
pulses. A search is made, in that space, for a “solution” which
minimize a suitable error function, measuring the “distance”
between target and properties of the actual pulse (4). A numer-
ical approach of this kind is due to Geen and Freeman (5). In
their method, the pulse “amplitude” (with sign) is written as a
truncated Fourier series; the trajectory of each component of
the magnetization during the pulse is followed by integration of
the Bloch equations, the resulting magnetization profile is
computed, and an “error” value is assigned to it, which is
related with the rms difference relative to the ideal profile. The
search for the optimal pulse is initially performed by repeating
the previous steps many times with randomly chosen Fourier
coefficients; the best solution found by the stochastic optimi-
zation is then refined through deterministic optimization.

We have found that a modified Geen and Freeman approach
can be successfully applied, with proper care, to many types of
selective excitation. The adiabatic and composite pulses are, in
part, an exception, and will be discussed in a separate paper.
With our algorithm, it takes, typically, a Pentium PC a few
minutes to converge, from any starting point, to a solution of
the problem which is, at least, as good as any other solution so
far published. The key technical advance is a robust stochastic
optimizer, with a “strategy” that automatically goes from
“coarse search” to “refinement.” As an example, Fig. 1 com-
pares the magnetization profiles of the self-refocusing pulse
(E-BURP2) of Geen and Freeman with our solution, obtained
with 50,000 “attempts” (a little over 1 h with a Pentium). We
have used the same Fourier expansion (10 harmonics) and the
same error function as Geen and Freeman. Our deviations from
ideality are substantially less than those of Geen and Freeman;
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the rms error is 2.2% (against 4.3%), while peak power and
average power of the two pulses are the same.

The goal of the article is to outline the procedures which

constitute our method, and to present some of the optimized
complex pulses which may be downloaded from our Web site (6).
It will be apparent that, by substituting the error function with a

FIG. 2. Comparison of pulses withk 5 10.5 s 5 0.25: thesinc and Gaussian pulses and the new L5S2. (a) Pulse shape; (b) transverse response.

FIG. 1. Comparison between self-refocusing pulses E-BURP2 (Geen and Freeman) and L0S2-0 (new).
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more general “cost” function, it is very easy to accommodate
different kinds of constraints, and compromise between reduced
RF power and accuracy of the profile. Sometimes, we drastically
changed the number of parameters (or harmonics) and found
empirically what we should have known from the outset: In some
cases, phase modulation is really not needed; adding parameters
beyond a certain limit reduces the quality of the solution which is
found with a given number of iterations.

2. METHODS

As hinted in the Introduction, a numerical approach to the
selective excitation problem comprises the following ele-
ments:

1. Pulse shape parametrization.While phase and ampli-
tude modulations are applied and computed in a stepwise
fashion, it is usually convenient to deal with analytic forms
of these modulations which have some smoothness. If the
time step is substantially shorter than the reciprocal band-
width of the NMR signal, the discrete nature of the excita-
tion should become irrelevant. The argument may not be so
clear-cut when we consider a variable magnetic gradient, or
field, as a part of the excitation (Tannus and Garwood (7)),
but it should essentially hold with static fields. An implica-
tion is that a “soft” upper limit exists for the number of
harmonics which may reasonably be taken into account. In

the following, the pulse length is divided into 64 time steps
and the time functions are, typically, expanded in a Fourier
series with up to 20 harmonics.

2. We define the idealtarget functionwith the desiredMx,
My, Mz profiles, and a rule to compute theerror function,a
measure of the “distance” between the calculated magneti-
zation profiles and the target function. We also introduce a
cost function,which is linearly related with the error func-
tion and may include the peak and/or the average pulse
power. By handling this cost function rather than the error
function, we may automatically avoid solutions with exces-
sive deposited power, or which are not compatible with the
RF amplifiers. We may also compromise between low
power and small error.

3. We choose anoptimization strategy,which leads to a
“solution,” i.e. to identify a pulse with minimal “cost.”

Parametrization and Computation

We are not suggesting a “black box” solution of the
selective pulses problem: On the contrary, we found it very
important to translate our understanding of the problem into
the choices which lead to the parametrization of the pulse,
particularly for adiabatic and composite pulses. We refuse
the brute force approach of a “point-by-point” pulse defini-
tion for the same reasons as Geen and Freeman, which are
theoretical (functions should be “smooth”) and practical

TABLE 1
Comparison between New and Traditional Pulses

Pulse Properties NP s k Ppk Pm
=Eb(%)

L5S2 Excit. 90 9 0.25 10.5 4.08 0.74 3.3
Sinc2 Excit. 90 2 0.25 10.5 3.99 0.74 5.7
Gauss2 Excit. 90 2 0.25 10.5 3.88 0.60 11.9
L5S5 Excit. 90 9 0.5 10.5 3.52 1.26 9.2
Sinc5 Excit. 90 2 0.5 10.5 3.78 1.32 10.2
Gauss5 Excit. 90 2 0.5 10.5 3.79 1.38 11.7
L3S5 Excit. 90 15 0.5 10.333 4.02 1.43 7.3
L0S2-0 Excit. 90 21 0.25 0 44.5 7.80 4.6
EBURP2a Excit. 90 21 0.25 0 45.5 7.77 4.9
L0S2-1 Excit. 90 15 0.25 0 15.3 5.28 5.2
EBURP1a Excit. 90 17 0.25 0 28.6 5.87 4.9
L0S3 Excit. 90 11 0.333 0 27.1 5.33 9.9
L0S5 Excit. 90 9 0.5 0 33.8 9.49 12.3
L-5S2 Excit. 90 13 0.25 20.5 21.7 4.02 11.2
L-3S4 Excit. 90 19 0.4 20.333 27.0 7.85 9.3
SAS2 Satur. 90 9 0.25 3.68 0.73 3.0
INS2 Inver. 180 15 0.25 16.1 5.43 9.0
I-BURP1a Inver. 180 19 0.25 27.4 6.62 11.0
I-BURP2a Inver. 180 23 0.25 61.4 6.80 11.5
RES2 Refoc. 180 12 0.25 57.3 6.37 17.0
RE-BURPa Refoc. 180 16 0.25 92.7 7.76 17.2

a From Geen and Freeman (5).
b All errors are computed with a transition bandb 5 1

6
.
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(optimization may be very difficult and long in a high-
dimension parameter space). A Fourier series approach sat-
isfies these requirements; we have used it both for amplitude
modulation (as Geen and Freeman did), and for complex
modulation (phase and amplitude) which will be presented
here because more general. We have also attempted other
types of expansion proposed in the literature (8, 9), but
found no advantage in them.

We will use time and frequencies normalized with the pulse
durationTp:

t 5 t/TP; w 5 vTP. [1]

Amplitude and phase modulation are defined through the real
and imaginary componentsw1x andw1y, written as

w1x~t! 5 2p$O
n50

Np

@Ancos~2pnt! 1 Bnsin~2pnt!#% [2a]

w1y~t! 5 2p$O
n50

Np

@Cncos~2pnt! 1 Dnsin~2pnt!#%, [2b]

where An . . . Dn are the optimization parameters andNp

should be substantially smaller than the numberN of steps.
Neglecting relaxation, we can obtain the final magnetization
profile (t 5 1), by orderly multiplying the Bloch rotation
matricesRn of each step

M ~1! 5 P
n51

N

RnM ~0!. [3]

FIG. 3. Shape profile (a) and transverse response (b) of pulse L5S5 (k 5 0.5, s 5 0.5).
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HereM (0) is the starting magnetization vector, and

Rn 5 S Rxx R1 1 R2 R3 2 R4

R1 2 R2 Ryy R5 1 R6

R3 1 R4 R5 2 R6 Rzz

D , [4]

with

Rxx 5 cos2fn~cos2uncosrn 1 sin2un! 1 sin2fncosrn [5a]

Ryy 5 sin2fn~cos2uncosrn 1 sin2un! 1 cos2fncosrn [5b]

Rzz5 sin2uncosrn 1 cos2un [5c]

R1 5 sin fncosfnsin2un~1 2 cosrn! [5d]

R2 5 cosunsinrn [5e]

R3 5 cosfnsinuncosun~1 2 cosrn! [5f]

R4 5 sinfnsinunsinrn [5g]

R5 5 sinfnsinuncosun~1 2 cosrn! [5h]

R6 5 cosfnsinunsinrn. [5i]

In these equations,rn, fn, un refer to thenth step and are,
respectively, the precession angle aroundBeff (the effective
field), the phase ofBeff in thexy plane, and the tilt ofBeff from
the z axis.

The vectorBeff depends on the offset (normalized)Dw: For
any pulse shape, the Bloch equations algorithm provides the
final magnetization vs the offset, i.e., theresponse function
M (Dw), which should be compared with thetarget function
MT(Dw). Following Geen and Freeman we introduce these-
lectivity s as

s 5
1

BW z TP
, [6]

whereBW is the desired bandwidth in hertz. It follows that the

FIG. 4. Shape profile (a) and transverse response (b) of pulse L3S5 (k 5 0.333,s 5 0.5).
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normalized bandwidth win [ 2pBW z TP and selectivity are
simply related:

win 5
2p

s
. [7]

The Cost Function

It seems natural to accept that the response to a selective
pulse will always exhibit a transition band, which cannot be
extremely narrow. It also makes sense not to impose any
prescription for the behavior of the magnetization in this band;
in a similar way, an engineer specifies a filter by giving cutoff
frequencies, maximum in-band oscillation, minimum off-band
attenuation, and extension of the transition regions. We will
consider the following band regions:

“ in”: uwu #
win

2
[8a]

“ trans”:
win

2
, uwu # win S1

2
1 bD [8b]

“ out”: win S1

2
1 bD , uwu # wmax. [8c]

The error functionE{ xi} will be defined as combination of
mean square deviations within the in-band and out-of-band
regions, for all three components of the magnetization. If (xi)
is a point in the parameter space, we set

E$ xi% 5 O
a

Xa
2, [9]

wherea 5 x, y, z and

Xa
2$ xi% 5

za
in O

k{in

@Ma~Dwk, $ xi%! 2 Ma
T~Dwk!#

2

1 za
out O

k{out

@Ma~Dwk, $ xi%! 2 Ma
T~Dwk!#

2

za
inNin 1 za

outNout
[10]

FIG. 5. Comparison of self-refocusing pulses (k 5 0) with s 5 0.25: E-BURP1 (Geen and Freeman) and L0S2-1 (new). (a) Pulse shape; (b) transverse response.
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and NinNout are the number of frequency points in-band and
out-of-band, respectively. Notice that we may give different
relative weightsz to components of the magnetization and to
band regions. In the following, we will always setzx 5 zy.

To take RF power into consideration, we begin noticing that
it scales asTP

21, i.e., the ratio between powerW and bandwidth
squared (BW)2 does not depend upon pulse duration. There-
fore, we introduce thenormalized poweras

p~t! 5 s2uw1~t!u2 }
W~t!

BW2 . [11]

and peak (ppk) and mean (pm) power as

ppk 5 s2MAX$n%@uw1(tn)u2] [12a]

pm 5
s2

N O
n51

N

uw1~tn!u2. [12b]

We define the cost function as

Ec$ xi% 5 O
a

Xa
2 1 l1ppk 1 l2pm, [13]

where thel1, l2 coefficients are carefully set, during the
optimization of each pulse, according to the relative magni-
tudes of the response profile error,ppk andpm, and in view of
the performances required to each solution. Alternatively, we
may have controlled the RF power by setting an upper limit to
ppk or pm (10) and neglecting all solution beyond these limits.
However, we found it more instructive always to search for a
power efficient pulse, with the exception of the case presented
in Fig. 1, where our purpose was to compare optimization
strategies.

Optimization Strategy

The cost functionEc{ xi} must be minimized in a space
{ xi}, which has up to 50 parameters constrained by condi-

FIG. 6. Shape profile (a) and transverse response (b) of pulse L-3S4 (k 5 20.333,s 5 0.4).
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tions of the typeui , xi , vi. The deterministicoptimizers
build a sequence of solutionsx(m) with the recursive equa-
tion

x~m11! 5 x~m! 1 a~m!s~m!, [14]

beginning with an initial guessx(0). Here m is the iteration
index, a(m) is called thestep, and s(m) the slope. Different
choices of the slope vectors characterize the various methods;
for example, if we move our point in the direction of the fastest
decrease ofE, i.e.,

s~m! 5 2gradE~x~m!!, [15]

we have the well-knownsteepest descentmethod. All popular
choices of the slopes (i.e., quasi-Newton, conjugate gradient)

involve a finite-difference estimation of the derivatives of the
error function E(x(m)). All these methods may be grouped
together in the large class of the so-called higher order deter-
ministic optimization methods (HODOM).

However, when the dimension of the parameter space in-
creases, the cost function is likely to have many local minima,
and each of them may trap the trajectory of pointsx(m). In this
case,stochasticmethods are usually more effective. Even if
they have common mathematical foundations (11), the stochas-
tic algorithms take different names (simulated annealing
(12, 13), genetic (14, 15), evolution strategies (16), . . . ), but
may be collectively called zeroth-order stochastic optimization
methods (ZOSOM). We begin themth iteration with a set ofm
“parent” vectors:x1

(m), . . . , xm
(m); from these,l “children”

vectorsy1
(m), . . . , yl

(m) are generated according to the proba-
bility law

FIG. 7. Shape profile (a) andMz response (b) of the saturation pulse SAS2 (s 5 0.25).
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r~y, ^x&m, d! 5 expF2O
i
Syi 2 ^xi&m

di D 2G , [16]

wherer is the probability density,̂xi& is the average of thei th
parameter over the parents, andd 5 { di} is a dispersion
vector, adjusted at each iteration. We have a (m 1 l) strategy
if in the next iteration the new parents are them vectors with
the smallest errors in the set comprising both parents and
children. We have a (m, l) strategy ifl . m and the bestm
vectors are selected among the children only. The main feature
of anevolution strategy(17) is the rule by which the dispersion
is modified. When the parents are close to the minimum and
the range of search is much larger than the distance from it,
very few of the children will be better than the parents, and the
value of \d\ should be reduced; when children are frequently
better than parents, the dispersion should be increased, to
explore regions farther away from̂x&. A decision about the

dispersion of the next step should be taken on the basis of a
statistically significant number of generations. The tuning ele-
ments of the evolution strategy are the length of the “history”
upon which the statistic is made, the dispersion fractional
change, and the critical success rate of children that triggers an
increase of the search range. When we increase the number of
parameters, we need to increase the evolution history, but total
computation time, in principle, is almost unaffected.

The stochastic methods have several distinct advantages
relative to the deterministic methods. First, they are more
effective in reaching a global minimum, or at least a very
stable local minimum. Second, they are more robust, since
oscillating trajectories are avoided. Third, no assumptions
have to be made about the smoothness of the cost function,
as required during the computation of the derivatives. And
last, the treatment of constraint conditions is usually much
simpler than in HODOMs. Among the stochastic algorithms
an evolution optimizer is preferable to the simulated anneal-

FIG. 8. Comparison of inversion pulses withs 5 0.25: I-BURP1 (Geen and Freeman) and INS2 (new). (a) Pulse shape; (b)Mz response.
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ing of Geen and Freeman because it can approach the
minimum with no need for deterministic refinement. We
will use an evolution strategy carefully tailored to the se-
lective excitation problem, which regularly yields a “good”
solution in a few hundred iterations.

3. RESULTS

Linear-Phase Selective 90° Pulses

The problem is to find a selective, 90° pulse in which the
response phase is proportional to the frequency offset (linear-

phase pulses (18)): w 5 kDw. The constant of proportionality
k may be positive, as for ordinary pulses, negative, as for the
“prefocused pulses” of Ngo and Morris (19), or zero, as for the
so-called self-refocusing pulses (5, 20, 21). In unit of M0, the
equilibrium magnetization value, the target function is (see
Eqs. [8])

Mx
T~Dw! 5 sin~kDw! [17a]

Mx
T~Dw! 5 cos~kDw! [17b]

Mz
T~Dw! 5 0 [17c]

FIG. 9. Comparison of refocusing pulses withs 5 0.25: RE-BURP (Geen and Freeman) and RES2 (new). (a) Pulse shape; (b)Mz response.

FIG. 10. Sequence for acquisition of 90° pulse response.

232 LUNATI ET AL.



when uDwu # win/ 2, while

Mx
T~Dw! 5 0 [18a]

My
T~Dw! 5 0 [18b]

Mz
T~Dw! 5 1 [18c]

when win/ 2 , uDwu # wmax. When the coefficientk is
positive, refocusing is usually accomplished with an inverted
gradient in MRI and/or with a hard 180° pulse. Whenk is
negative, the maximum signal is achieved sometimes after the
pulse end, with no change inB0. When k 5 0, all signal
components are in phase when the pulse ends.

Positive phase is a “natural” feature of excitation pulses. In
fact, the linear response theory provides, as the best selective
pulse shape, the sinc function, which gives a coefficientk 5
0.5; in imaging we then need to invert the gradient for a time
0.5 TP to obtain an echo. A Gaussian pulse also hask 5 0.5.
When we search for amplitude and phase modulated solutions
with k 5 0.5, thealgorithm spontaneously converges toward
real (purely AM) pulses, similar to slightly shifted sinc shapes;
correspondingly, the response is symmetric around the center
frequency. Figure 2 compares a sinc and a Gauss pulse (selec-
tivity s 5 0.25) with our solution L5S2 (linear-phase pulse
with k 5 0.5 and selectivity5 0.25; see Table 1). These three
pulses require essentially the same peak power, but the new
one displays a better in-band profile than the Gauss and a better
out-of-band profile than the sinc. With increasing selectivity
(i.e., reduced time needed to excite the same bandwidth), the
advantages of our solution L5S5 (s 5 0.5), relative to the
corresponding Gauss and sinc pulses, becomes more evident,
as reported in the table; this pulse is shown in Fig. 3. An
interesting solution, which has no classical counterpart, is
L3S5 (k 5 0.333,s 5 0.5), which is shown in Fig. 4. With
an inverted gradient, it requires only a 0.333TP refocusing
time, and uses the same power as a Gauss pulse.

Pulses withk 5 0 are calledself-refocusingpulses; the most
commonly used are BURP (5) and SNEEZE pulses (20, 21).
Geen and Freeman’s E-BURP2 is a self-refocusing pulse with
s 5 0.25, obtained via simulated annealing followed by de-
terministic refinement. It has been compared with our solution
L0S2-0 (pulse withk 5 0 ands 5 0.25, version 0), obtained
with the same error function and selectivity of these authors, in
Fig. 1. Notice from Table 1 that these two solutions require RF
peak powerppk of about 45, i.e., 10 times that of a Gaussian
pulse. In the computation of Table 1 we adopted a narrower
transition band than Geen and Freeman did (b 5 1

6
rather than

b 5 1
4
), and we routinely included peak and average power in

our cost function. Results for the self-refocusing pulses are
presented in Fig. 5, which compares the theoretical profiles of

FIG. 11. Response of (a) sinc (138 dB) and (b) L5S2 (137 dB) pulses.

FIG. 12. Sequence for acquisition of 180° pulse response.
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Geen and Freeman’s E-BURP1 pulse (ppk 5 28.6) with our
low-power solution L0S2-1 (ppk 5 15.3). Our response is
slightly worse, but we need half the peak power of E-BURP1
and one-third that of E-BURP2. In the table, we mention two
self-refocusing 270° pulses: L0S3 (s 5 0.333) and L0S5 (s 5
0.5). Despite the higher tip angle, they require the same peak
power as E-BURP1 while having higher selectivity and better
phase behavior, as noted earlier by Emsley and Bodenhausen
(22) when comparing Gaussian pulses of 90° and 270°. By the
way, the optimization found these solutions by itself when no
constraint was set on the pulse angle.

We found it quite difficult to generate good-looking and low
power pulses with negativek: Response profiles are worse, and
power much higher, than for positive pulses. In Table 1 we list
several solutions: withk 5 20.5, s 5 0.25 (L-5S2, a 270°
pulse) ork 5 20.333,s 5 0.4 (L-3S4). Figure 6 shows the
pulse shape of L-3S4 and its response.

Saturation, Inversion and Refocusing Pulses

In addition to linear-phase pulses, MRI and NMR may need
saturationpulses,inversion (or 180°) pulses, andrefocusing
pulses, all of which may be either hard or frequency-selective.
The difference between linear-phase and saturation pulses is
that, with the former, we are not interested in the phase of the
in-plane magnetization: correspondingly, we may putgx

in 5
gy

in 5 0 in Eq. [10]. They usually show better profile and
power performances than the linear-phase pulses, because they
are less constrained. Figure 7 shows theMz magnetization
profile of the saturation pulse SAS2 (s 5 0.25) which has
smaller peak and mean power than the “natural” L5S2 linear-
phase pulse.

Obviously, in-plane magnetization is ignored also in inver-
sion pulses, which ideally haveMz 5 21 in-band, andMz 5
1 elsewhere. Figure 8 compares I-BURP1 of Geen and Free-
man (ppk 5 27.4)with our corresponding solution INS2 (ppk

5 16.1),both withs 5 0.25. Notice that our profile is sharper
(this follows from using narrower transition bands than Free-
man) and peak power smaller. For comparison, in the table we
quote also the characteristics of I-BURP2, which needs more
power than I-BURP1. As discussed by Geen and Freeman, a
refocusing pulse should be time-symmetrical, and a real mod-
ulation with only cosine terms (Bn 5 0, Dn 5 0 in Eqs. [2])
will do. Our solution, found in this way (RES2) is compared
with RE-BURP of Freeman in Fig. 9 and in the table. Our pulse
is sharper, has worse off-band behavior, and requires nearly
half peak power.

4. CONCLUSIONS

We have proposed a robust method to explore the spaces of
solutions of band-selective pulses which seems to us superior
to analytical or numerical approaches so far published. In
particular, we consistently find low-power solutions by weight-
ing the power in the cost function. We have discussed pulses
with negativek which may find a variety of applications, e.g.,
in fast projection–reconstruction sequences.

5. EXPERIMENTAL

We tested our pulses with a Sisco-Varian 4.7 T imager and
a cylindrical water phantom with axis alongB0. We found that
artifacts may be minimized, and sequence time reduced, by
entirely avoiding gradient switching. The excitation bandwidth
of the pulse to be tested was set to 2 kHz. Figure 10 shows the
sequence employed to test linear-phase pulses. We used our
refocusing pulse RES2 (independently tested) with a wider
bandwidth (4 kHz) in order not to interfere with the profile of
the first pulse. This setup allows one to measure thek value of
the linear-phase pulses in terms of the time-shift of the echo
obtained. We found delays consistent with our predictions, but

FIG. 13. Response of (a) I-BURP1 (147 dB) and (b) INS2 (144 dB)
pulses.
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in Fig. 11 we show the absolute magnitude of the FT of the
entire echo, which does not depend upon the echo time. The
amplitude of the first pulse is tuned for maximum signal, and
the reading of the attenuator yields a rough indication of the
pulse power. Figure 11 compares the response of a sinc pulse
(s 5 0.25) with the response of our L5S2; as expected, the last
is better and requires about the same power (137 dB for L5S2
and138 dB for the sinc).

For inversion and saturation pulses we used the sequence of
Fig. 12 with a very broadband (12.5 kHz) pulse with negative
k L-3S2, 200ms long, which allows acquisition to begin well
after the dead time. Figure 13 compares INS2 with I-BURP1.
Differences in shape are not significant (as expected), but INS2
needs amplification of144 dB while I-BURP1 needs147 dB
in experiments with the same bandwidth.
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